Step of Proof: nth_tl_is_fseg
11,40
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
nth
tl
is
fseg
:
1.
T
: Type
2.
L1
:
T
List
3.
L
:
T
List
L1
= nth_tl(||
L
||;
L
@
L1
)
latex
by ((((ListInd 3)
CollapseTHEN (Reduce 0))
)
CollapseTHEN (Auto
))
latex
C
1
:
C1:
4.
u
:
T
C1:
5.
v
:
T
List
C1:
6.
L1
= nth_tl(||
v
||;
v
@
L1
)
C1:
L1
= nth_tl(||
v
||+1;[
u
/ (
v
@
L1
)])
C
.
Definitions
i
z
j
,
i
<z
j
,
n
+
m
,
#$n
,
[
car
/
cdr
]
,
nth_tl(
n
;
as
)
,
||
as
||
,
as
@
bs
,
Type
,
s
=
t
,
type
List
origin